服务器 频道

Intel Nehalem-EP处理器首发深度评测

Click Here

The Uncore:QPI
核外系统:QPI

  直联架构不仅仅意味着处理器与内存直接相连,还让处理器之间也直接联系起来。Hyper-Transport总线的使用让Opteron进入了高性能计算市场,QPI所作的事情是一样的。通过QPI总线,处理器之间可以直接相连,不再需要经过拥挤、低带宽的FSB共享总线,多处理器系统运行效率大为提升。 对于多处理器系统而言,QPI提供的巨大带宽对性能提升很有作用。

QPI总线 vs FSB总线

QPI vs. FSB

名称

Intel FSB(Front Side Bus)

Intel QuickPath Interconnect(QPI)

拓扑共享总线点对点连接
物理总线宽度(bits)6420 x 2(双向)
数据总线宽度(bits)6416 x 2(双向)
传输速率333MHz
1.333GT/s
10.6GB/s
3.2GHz
6.4GT/s
12.8GB/s(单向)
25.6GB/s(双向)
需要边带信号
引脚数15084
时钟数11
集成时钟
总线传输方向双向单向

  使用高频率DDR3内存,访问本地内存的延迟大约为60个时钟周期,而通过QPI总线访问远端的处理器并返回数据大约需要90个时钟周期(如上一页所述)。QPI的就是Core架构为了使用服务器市场而做出的进化,它可以建立一个庞大的可扩展的解决方案。


上:Nehalem-EP,两条QPI总线
下:Nehalem-EX,四条QPI总线

  除了提供更高的带宽(每链路25.6GB双向带宽)之外,QPI总线还让多处理器系统更有效率:处理器之间可以直接连接。如上图,每个CPU都可以直接和其他三个CPU通信。假如放宽些要求,不需要对角线处理器直接相连,那么Nehalem-EX还可以直接实现8路相连,而不需要加入额外的芯片。


Nehalem-EX的时钟架构

  所有的Nehalem都按时钟分为三个部分:核心、核外(L3和系统逻辑)和IO(QPI和IMC),这三个部分的频率通常互不相同。由于L3缓存属于核外部分,因此它的频率和核心频率通常是不同的,在以往,CPU内的高速缓存通常都是全速的,只有Pentium II的L2缓存是半速的(它和CPU内核不在同一个晶圆上,虽然在同一个CPU封装内),而K6之前的L2缓存都是放在主板上面的,速度极低。现在,Nehalem架构下,L3缓存的时钟频率也不再是全速,而是要较低一些,例如,Core i7 920的L3频率应该是2.133GHz,Xeon X5570的L3频率应该是2.667GHz。


Nehalem-EP/Gainestown Xeon X5570处理器,主频2.93GHz,QPI总线频率高达3.2GHz,比主频还要高

  QPI总线频率一般和L3频率也不同,不过它们具有一些联系。对于桌面处理器来说,QPI总线只有一条,简单地连接处理器与IOH,然而对于服务器处理器来说,除了连接IOH之外,处理器与处理器之间也需要通过QPI总线,因此服务器的处理器都具有很高的QPI频率,有些时候甚至高于处理器主频率,如Xeon X5570处理器。

桌面Nehalem:Core i7 920的主频是2.67GHz,而QPI总线频率只有2.4GHz

  一些主板允许单独设置这些不同的频率以方便超频。在这里,笔者可以回答很多用户关心的UCLK频率(一些主板上具有的Uncore Clock设置选项)的问题:L3缓存频率和IMC集成内存控制器的频率是不同的,也就是UCLK和内存频率是不同的,不过它们具有一些内在关系。此外,由于UCLK关系的Uncore部分关系到了整个处理器的中枢部分:系统逻辑(包括中央路由器和集线器),因此它的频率设定可以很大地影响到整个处理器的运行效能。

1
第1页:Intel Nehalem-EP处理器首发深度评测第2页:Nehalem:Tick-Tock战略的产物第3页:Nehalem设计思想的转变:基于企业应用第4页:深入Nehalem微架构:核心区间划分第5页:深入Nehalem微架构:指令拾取第6页:深入Nehalem微架构:解码与循环流检测第7页:深入Nehalem微架构:乱序执行引擎第8页:深入Nehalem微架构:乱序执行单元第9页:深入Nehalem微架构:乱序存取单元第10页:深入Nehalem微架构:乱序存取单元第11页:深入Nehalem微架构:缓存子系统第12页:深入Nehalem微架构:缓存子系统第13页:深入Nehalem微架构:核外系统/IMC第14页:深入Nehalem微架构:核外系统/QPI第15页:深入Nehalem微架构:ccNUMA架构第16页:深入Nehalem微架构:超线程技术第17页:深入Nehalem微架构:ccNUMA、SMT与OS第18页:深入Nehalem微架构:虚拟化第19页:深入Nehalem微架构:SSE4.2指令集第20页:深入Nehalem微架构:制造工艺第21页:深入Nehalem微架构:长沟道晶体管技术第22页:深入Nehalem微架构:能耗比控制第23页:深入Nehalem微架构:能耗比控制第24页:小结:Nehalem架构的优势第25页:Nehalem-EP:处理器规格对照表 第26页:Nehalem座驾:Tylersburg芯片组结构第27页:Nehalem座驾:Tylersburg芯片组PCIExpress第28页:Nehalem座驾:Tylersburg芯片组QPI第29页:Nehalem座驾:Tylersburg芯片组其它特性第30页:Nehalem座驾:四种Tylersburg规格对照表第31页:实物图:Nehalem-EP最高型号Xeon X5570第32页:实物图:Tylersburg-EP芯片组第33页:实物图:Intel Nehalem-EP测试样机第34页:实物图:Intel Nehalem-EP测试样机第35页:实物图:Intel Nehalem-EP测试样机第36页:实物图:Intel Nehalem-EP测试样机第37页:测试环境与测试方法第38页:Nehalem-EP服务器对比测试平台第39页:软件测试信息、系统部件简介第40页:SiSoftware Sandra 2009处理器性能测试第41页:SiSoftware Sandra 2009缓存内存性能测试第42页:SPEC CPU 2006整数性能测试第43页:SPEC CPU 2006浮点性能测试第44页:ScienceMark缓存内存子系统性能测试第45页:CineBench R10性能测试第46页:Iometer磁盘子系统性能测试第47页:NetBench文件服务器性能测试第48页:Benchmark Factory数据库性能测试第49页:超线程能力对比测试:SiSoftware Sandra第50页:超线程能力对比测试:ScienceMark第51页:超线程能力对比测试:CineBench第52页:超线程能力对比测试:Iometer第53页:超线程能力对比测试:NetBench第54页:超线程能力对比测试:Benchmark Factory第55页:超线程能力对比测试:SPEC CPU 2006整数第56页:超线程能力对比测试:SPEC CPU 2006浮点第57页:Nehalem-EP平台功耗测试第58页:IT168评测中心观点
相关文章