The Core Front-End: Loop Stream Detector
处理器核心前端:循环流检测
在解码为uop之后Nehalem会将它们都存放在一个叫做uop LSD Buffer的缓存区。在Core 2上,这个LSD Buffer是出现在解码器前方的,Nehalem将其移动到解码器后方,并相对加大了缓冲区的条目。Core 2的LSD缓冲区可以保存18个x86指令而Nehalem可以保存28个uop,从上一页可以知道,大部分x86指令都可以解码为一个uop,少部分可以解码为1~4个uop,因此Nehalem的LSD缓冲区基本上可以相当于保存21~23条x86指令,比Core 2要大上一些。
The Core Front-End: Loop Stream Detector
LSD循环流监测器也算包含在解码部分,它的作用是:假如程序使用的循环段(如for..do/do..while等)少于28个uops,那么Nehalem就可以将这个循环保存起来,不再需要重新通过取指单元、分支预测操作,以及解码器,Core 2的LSD放在解码器前方,因此无法省下解码的工作。
Nehalem LSD的工作比较像NetBurst架构的Trace Cache,其也是保存uops,作用也是部分地去掉一些严重的循环,不过由于Trace Cache还同时担当着类似于Core/Nehalem架构的Reorder Buffer乱序缓冲区的作用,容量比较大(可以保存12k uops,准确的大小是20KB),因此在cache miss的时候后果严重(特别是在SMT同步多线程之后,miss率加倍的情况下),LSD的小数目设计显然会好得多。不过笔者认为28个uop条目有些少,特别是考虑到SMT技术带来的两条线程都同时使用这个LSD的时候。
在LSD之后,Nehalem将会进行Micro-ops Fusion,这也是前端(The Front-End)的最后一个功能,在这些工作都做完之后,uops就可以准备进入执行引擎了。